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 The following are expanded discussions of the basic material to be presented in the first session 
of NPTW.  An important objective of this paper is to keep the concepts clear and simple and to 
attempt to insure maximum understanding before formulas are presented. 
 
Kinematics 
 
Observing motion and the meaning of position, velocity and acceleration.   
Using specific examples, perhaps by even moving around yourself, have students understand the 
meaning of position (measured in units of length some distance from a specific point), velocity 
(measured in units of length per time in a specific direction) and acceleration (measured in units 
of length per time per time or length/time2 in a specific direction.) 
 
When the actual meanings of position, velocity and acceleration are understood, perhaps 
mathematical definitions can be given: (These are definitions and not formulas.) 
If “s” is used for position and “∆s” for change in position (often called displacement), velocity 
and acceleration can be defined:   v = ∆s/∆t  (or lim ∆t ®0 of ∆s/∆t)   and a = ∆v/∆t  (or 
lim®0 of ∆v/∆t). These shorthand definitions of velocity and acceleration, if  understood by the 
students, will be quite helpful in later discussions. Discussions of limits are not necessary but the 
ideas of slopes of graphs representing these concepts will be helpful. 
 
Running out data for graphs of motion 
 
Avoid making kinematics an exclusively mathematical and formula plugging discussion.  
Running out actual examples of motion by you or students will help make the motion more real 
and understandable.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Initially use simple motion examples and then move to more complex examples discussing when 
and in what direction your velocity and acceleration is.  When sketching graphs of motion, place 
position on top, velocity immediately below it and acceleration on the bottom. 
 
 

 

Position zero 
reference 
stand 
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Using basic graphs to derive the kinematics formulas      
 
When sketching graphs of motion, place the position vs. time above the velocity vs. time graph 
and the velocity vs. time graph above the acceleration vs. time graph.  Illustrate and discuss how 
the slope of the graph above equals the value on the graph below, and how the area of the graph 
below equals the change in value on the graph above.  Show that these follow from  the 
definition of velocity (v= ∆s/∆t  or ∆s=v∆t)  and definition of acceleration (a=∆v/∆t or ∆v= a∆t) 
 
After students appreciate the meaning of graphs of motion, use basic graphs to derive the usual 
kinematics formulas.  This will emphasize learning the meaning of the formulas before simply 
plugging into them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A simple graph problem 
that is often confusing is 
to define a vertical 
coordinate system at some 
point above the lecture 
table and toss a ball 
upward by accelerating it 
upward for a short period 
of time, let it go upward 
and return to your hand 
and slow it to stop in 
about the same distance 
you accelerated it upward.  
Have the students sketch a 
position, velocity and 
acceleration vs. time for 
the ball during the entire 
flight each directly below 
one another.  (Suggested 
solution immediately to 
the right, Illustration of 
process, to the far right.) 

 

Velocity zero at top but acceleration still g.      
 
 
 
        v      g        v                g 
 
 
 
 
 Zero of position__________________________ 
            a of          a of 
          hand                     hand 
 
 Rest hand with ball on the table.  Accelerate upward 
and release and allow ball to rise while accelerating  
downward by gravity.  When the ball returns to hand   at 
at nearly the same position as release point, again  
apply upward acceleration as originally done upward.         

 

Suggested sketch solution 
 
 
       s   t 
 
 
     v     t 
 
 
 
     a                     t 
 
The above suggested 
sketches assume all 
accelerations are uniform.  
 It may help students if 
velocity is considered first. 
    

The following graphs all assume uniform acceleration 
        s 
    ∆s 
        s0                                    s = 1/2at2  +  v0t + s0 

      t  
     v         
       ∆v    
     v0    ∆s          v= ∆v + v0 = at + v0 
            t= Area under vt graph=∆s 
      a                                    

           ∆v       Area under at graph =∆v 

          t  
          

On the left are illustrated position, velocity 
and acceleration vs. time graphs directly 
above one another.  Notice that the position 
vs. time graph starts with some slope and an 
initial value.  The initial slope is because 
there was an initial velocity on the graph 
below.    Also, the area under the entire 
graph of velocity vs. time will yield the 
change in position on the above graph.  Help 
your students to understand these slope 
area concepts follow from the definitions of 
velocity and acceleration.  Stress also, these 
“formulas” are only for uniform 
acceleration. 
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Vectors and basic Trigonometry           
 
Although the NGSS do not advise teaching vectors, many teachers feel they should be taught in 
physics and are essential if they will be teaching AP.  Also as NGSS suggests, consideration of 
only straight -line kinematics, students will only need to recognize plus and minus direction of 
motion but projectile and circular motion make little sense without vectors.  Even without trig, 
sketching vectors using rulers and protractors can help students to come to an understanding how 
scalar math and vector math differ.  (Another problem with NGSS is their insistence to confine 
all discussions to one dimension.  This failure to consider the real world of two and three 
dimensions can be limiting to student understanding.) 
 
A nice simple introduction to vectors is to ask the students: “What is 3 plus 4?”  When they 
answer 7, next suggest how far would you have moved from your starting point if you moved 3 
meters north and 4 meters east?  Hopefully this will lead to a discussion of situations that are not 
in a straight line.  It should also suggest a need for a type of addition different from scalar 
addition. 
 

Define vector addition as: “Place the vectors from point to tail and the vector from the tail 
of the first to the point of the last is the vector sum.”  

 
A great introductory exercise in vector addition is to write out a treasure map type of problem 
with assorted distances and directions to be paced out to find the treasure.  Students can use 
rulers and protractors to find the treasure and learn that this is simply an exercise in vector 
addition. 
 
A little basic trig can be very helpful in all of physics.  Students are often introduced to trig 
before they reach physics (often in a Geometry class) but a quick and simple review with 
emphasis on quick use of the trig functions could be helpful.  
 
Suggestion for introduction of simple right angle trigonometry in a physics class: 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
Falling objects and Projectile Mot 
 

Using right triangles, define sine, 
cosine and tangent.  After 
defining the functions stress how, 
if you know the length of the 
hypotenuse, you can quickly 
compute the length of the side 
opposite the angle (H sin q ) and 
the length of the side adjacent to 
the angle ( H cos q )  The idea is 
to recognize how to compute the 
opposite side and adjacent side 
immediately.  This will then lead 
to quick computations of the 
components of a vector 

 

 
              H          H sin q            V          V sin q 
        q    q 
      H cos q         V cos q        

 

 
   O       y 
        q    q 
 A      x 
If finding the angle is required,  
  q = arc tan O/A        q= arc tan y/x 
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Projectile Motion 
  
The key to understanding projectile motion is to appreciate the actual motion of the projectile at 
any time is the vector sum of a vertical accelerated motion, and a horizontal motion at constant 
velocity.  Once the projectile is released, the acceleration is always the constant downward 
acceleration of gravity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Monkey and Hunter demonstration 
 
   A spectacular demonstration that can help to emphasize the basics of projectile motion is often 
called the “Monkey and Hunter demonstration”.  Those who take issue with the name can call it 
something else. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Vertical Motion. 
y=1/2(-g)t2 +Vy0 +y0 
 
Vy = (-g)t + Vy0 
 
               Vy0      V0 
 
 
        y0 

 
Horizontal motion  x=Vx t 

-g 

 

The story describes a hunter who aims directly at a 
monkey in a tree and the monkey plans to release 
his grasp on the tree as soon as the gun is fired 
thinking the bullet will fly over his head.  However, 
the same gravity that pulls the monkey down will 
also pull the bullet down, actually insuring a hit.  
The apparatus for this demonstration can be 
purchased or with some skill and time, it can be 
constructed. The gun consists of a metal tube with an inside diameter 

of about ½ “ that will freely accommodate a ½”steel ball.  
A simple switch (illustrated on the left) at the end of the 
tube is in series with a power supply and an electromagnet 
to hold up the target.  The gun is firmly clamped and 
aimed at the target. The ball can be blown with sufficient 
strength to hit the target before both hit the floor. 
 
 

 

Switch   To power supply 
 
Notch cut on top of tube  To 
             
electromagnet 
Notch cut on bottom of tube 
Ball slams the vertical wire, separating it from 
tube and breaking the circuit. 
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Newton’s Laws of Motion         
 
Statics, force vs. torque  (The following may be best for a 12th grade High School course.) 
 
Consider introducing “Statics” before “Dynamics”. The conditions for objects to be stationary 
are not trivial yet can help students to appreciate how forces and torques must add to zero on 
objects at rest, or moving at constant velocity.  The two conditions for static equilibrium are: 
 

1. The sum of all the forces acting on a stationary object must add to zero. 
2. The sum of all torques acting on a stationary object must add to zero. 

 
Using the first condition, analyze situations where forces act on a “point object” like considering 
the forces in strings (tensions) pulling in several directions from a point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Naturally, the second condition requires understanding the definition of torque (or “the moment 
of a force”).  If we define “moment arm” as the distance from a point to the application of a force,  
torque can be defined as follows:   

Torque is force perpendicular times the momentum arm.  (Note, this is the same as 
moment arm perpendicular times force.) 
  G = Fperp r    or      G =   rperp F      or      G = r X F 
(The use of the vector cross product would be for APC.  The order is important.) 
 
 
 
 
 
 
 
 
 
 
 
 

 

A simple yet effective demonstration to illustrate the first law 
of static equilibrium is to tie a string to support a 1 kg mass in 
such a way that either end of the string is tied to a horizontal 
support such that the angles the strings make with the vertical 
are 30 and 60 degrees. (Makes calculation easy.)  Ask the 
students: What would a force scale read if inserted into the 
loops you have placed in the strings and pulled in the direction 
of the string?  (Assume the 1 kg mass weighs about 10 nt. 
Students often guess that the longer string has the larger 
force.)  Use vectors to compute the solution and test by 
measuring.  Change the angles for further discussion. 

 

  F sin q 
 
      F 
      r           q  
               F cos q   
 

Students might better understand the concept of 
torque in reference to using a wrench.  In the 
illustration on the left, the point of rotation is the 
center of the nut, the moment arm, r, is the 
distance from the point of rotation to the 
application of the force, F.  Since torque is only 
the component of the force perpendicular to the 
moment arm, only F cos q  applies (or if the angle 
of the force were taken from the line of the 
wrench, then sin and cos would be exchanged in 
the illustration.  Ask the students: “Where and with 
what angle would they apply the force to get the 
greatest torque?”  
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A simple torque demonstrator will help students to understand the definition of torque.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As well as rotating the torque demonstrator to show the angle relationship, slide the small dowel 
in and out of the larger dowel to show how the length of the momentum arm influences the 
torque. 
 
Dynamics and Newton’s laws of motion 
Newton’s three laws of motion are very important for all levels of physics instruction. 
 

I  Bodies at rest will remain at rest and bodies in motion will continue in 
uniform straight-line motion unless acted upon by an outside force. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The illustration on the right is of a “torque 
demonstrator.”  A large diameter dowel about 
6” long has a hole drilled in its center to allow a 
smaller dowel to be slipped into this hole.  The 
hole should allow the smaller dowel to be slid 
back and forth yet be held fixed.  A small weight 
is tied near the end of the small dowel 
producing a downward force to cause the 
torque.  

 

 

As shown on the left, first hold the 
large dowel with the weight 
downward.  When the weight is all 
the way down, no torque is 
required but as it is rotated 
upward, more and more torque is 
required since the force is forming 
a more perpendicular angle with 
the moment arm. 

 

An easy but impressive demonstration often called the 
“inertia ball” is shown on the left.  A ball is not needed 
and a one -kilogram mass with hooks on top and bottom 
will work well.  Light -weight string (of equal strength off 
of the same roll) like cotton kite string is attached above 
and below the mass as shown.  Use a substantial support 
since you will be jerking hard on the lower string.  Ask the 
class: “If I pull hard on the lower string, which string will 
break?”  Let a student who answers: “The upper string,” 
explain why.  Compliment the student on a logical 
explanation and then jerk hard and break the bottom 
string.  The subsequent discussion of inertia should 
follow. 
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The above demonstration can be enhanced to help students with the concept of experimentation 
and “The Scientific Method” by saying “I plan to repeat the experiment I just did in exactly the 
same way.  Now which string will break?”  It is amazing how many will say: “The top string!”  
Repeat as many times as you wish breaking the bottom string. (Naturally, retying the bottom 
string may be required.)  Breaking the top string is harder. Use a very slow and constant pull.   
 
Why it is important to stress that movement is a straight-line is required when introducing 
Newton’s first law?  The reason is historical. 
 
Galileo also had a concept of natural motion but he felt that objects would continue to move in a 
direction parallel to the Earth’s surface, or even the sun’s surface for planets.  This “circular 
inertia” avoided the need, as Newton recognized, for a force to hold the moon in orbit.  That a 
force is required to change an object’s direction of motion is an important addition to the concept 
of inertia. This is easy to demonstrate using a ball rolling along the floor and hitting it with a 
stick at right angles to its velocity to change its direction of motion.  Newton understood this 
well and it became the initial thought that led to the development of the law of gravity. 
 
 II  The usual statement of Newton’s second law can be boiled down to: 
     F = ma. 
Stress that this is not mass times velocity but mass times change in velocity or acceleration. 
 
 
 
 
 
 
 
 
 
 
As a lab exercise the students can be provided with several equal books that can be called “unit 
masses”.  (The balance can be use to measure the weight of a single book, m=W/g, to calculate 
the actual mass if desired.)  Established a measured distance to use with a stopwatch to calculate 
the actual acceleration.  Stacking books on top of the first book will vary the mass.  The resulting 
calculation of net force, mass and acceleration should give a crude verification of Newton’s 
second law with lots of error to discuss.  Using waxed paper and other materials under the 
bottom book should lead to a nice discussion of the coefficient and force of friction. 
 
 III  For every action (force) there is an equal and opposite reaction  
       (force). 
 
Stress that the action force is on one object and the reaction force is on another object.  This can 
be better understood by saying:  “If A acts on B then B acts on A.”  For example, when an object 
is freely falling above the surface of the earth, what is the action force on the object and where is 
the reaction force?  The action is the earth pulling on the object and the reaction would be the 
object pulling back on the earth.             

 

A demonstration or lab exercise can be done that 
involves little equipment and several of the same 
sized books that most classrooms have on hand, Pass 
a string through the book as shown and pull it with a 
force balance, First pull it at constant velocity to 
establish the force of moving friction and then pull it 
harder to make it accelerate.  The difference between 
the two forces is the “net” or “unbalanced” force 
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The following discussion of Newton’s third law has been found useful with elementary school 
students but high school students often confuse the concepts illustrated.  The popular 
misconception is that only living things and people can exert forces but it is difficult to 
appreciate that when you push on a wall, it always pushes back with an equal and opposite force. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gravity and Newton’s Law of universal gravitation.  (The inverse square law.) 
 
Newton’s Law of Gravitation (as well as Coulomb’s Law) seems to be a popular example of the 
inverse square law of force.  Stress that in the gravitational law the masses are “gravitational 
masses” and in Newton’s second law, the mass is “inertial mass.”  The fact that these two 
“different” masses can be cancelled in assorted problems is because we use the same units for the 
two “different” masses.  That they are the “same” and lead to large and small masses falling at 
the same rate was a puzzle to Newton.  
 
It can be instructive to ask the class: “Why do large rocks and small rocks fall with the same rate 
of acceleration?”  This can be discussed by stressing that the large rock has a large weight 
(related to its gravitational mass) and a large mass (its inertial mass.) The mathematical argument 
could be:  GmM/r2 =ma, when you cancel m, on the left side of the equation it is gravitational 
mass and on the right side of the equation it is inertial mass.  That they are measured in the same 
units makes the math right but still, they are different concepts.  Einstein cleared this up. 
 
Since the inverse square law is so important, a good lab or demonstration would be to investigate 
how light from a small filament light source varies with distance from the source.  The geometry 
of the surface area of a sphere together with light intensity being power per unit area can be used 
to give a mathematical explanation of the inverse square law. 
 
 

 

The first part of the exercise involves a simple binder clip.  
Have one student press on one side and another press on 
the other side.    Discussion and experimentation should 
lead to the fact that either student must push as hard in 
the opposite direction to open the clip. 

 
 

After establishing that equal and opposite forces 
are required to open the binder clip, have a 
single student press the clip against a wall to 
open it.  It should be obvious that the wall 
presses back.  On the right is shown the usual 
way to open the clip and it should also be 
obvious that equal and opposite forces are 
required.  The same idea can be used with 
pulling forces and rubber bands. 
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Circular Motion and Satellite dynamics 
 
Change in velocity means change in direction as well as change in speed. 
Since acceleration is introduced for straight-line motion, it can be difficult to appreciate that a 
constant speed changing direction is also acceleration.  Now that Newton’s second law has 
connected force and acceleration, discuss the force that is required to move an object in a circle 
and insist that this force must also cause acceleration. 
 
A very useful and simple demonstration device is a rubber stopper (#6 or so) tied to a long string.  
This device can be used to demonstrate circular motion, pendulums, etc. and should be kept on 
hand to illustrate things that might come up.  Below it is used to help students understand the 
direction of centripetal acceleration. 
 
 
 
 
 
 
 

 

Using a clear light bulb with a small filament it will be 
observed that as the bulb and meter are separated, the 
intensity of the light measured by the meter will vary as the 
inverse square of the distance between them.  Make sure 
little or no light reflects from light objects (such as your 
face or hands) back into the meter. 

 

 
      r1        r2 
            r3 

Since the inverse square law is used so frequently, it 
might be well to help the students appreciate that it is 
simply the consequence of a small or spherical source 
sending any kind of energy equally in all directions.  This 
means the energy will spread out uniformly over the 
surface of a sphere.  (Think of a short explosive burst 
spreading out into three-dimensional space.)  Since the 
energy is spread uniformly over the surface of the 
sphere and the surface area of the sphere varies as the 
square of the radius, the intensity of the energy (energy 
per unit area) will vary inversely as the square of the 
distance from the source.  This works for sound, light, 
gravitational or electric fields, etc.  Ask your students 
how they think light would vary with distance from a 
long cylindrical tube like a fluorescent tube.  What 
about an extended plane of light? 

  

As shown on the right, use two 
hands to hold the stopper and pull 
the string straight.  Ask students: 
“How could I keep the string 
horizontal and straight with only 
one hand?”  Hopefully acceleration 
in the direction shown on the left 
would be a conclusion.  Also 
discuss if horizontal is even 
possible. 

r 
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Derivation of the centripetal acceleration expression  a=v2/r     
Using vector concepts, a not too involved derivation of the centripetal acceleration relationship 
can be done: 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, ∆s/∆t is our definition of velocity, v, so the equation becomes;    a  = v2/r  
This derivation actually deals with average velocity and acceleration but if your students 
appreciate the definition of velocity involving limits, the result applies for every instant the 
object moves on the edge of the circle at constant speed.  This expression for centripetal 
acceleration will be used often throughout a physics course. 
 
A popular demonstration of centripetal force is to swing a bucket of water overhead at a 
sufficient speed to hold the water in the bucket.  The following demonstration done before or 
after this bucket of water demonstration should help students to understand the basic physics. 
 
 
 
 

 

Now twirl the stopper holding on to the string over your 
head and insist the direction of the force acting on the 
stopper must be inward or “centripetal”.  The next step 
would be to dispel the misconception that there is a force 
outward on the stopper.  As you swirl it in a circle say you 
intend to release the string when the stopper is aligned 
directly at a student in the class.  “Will the stopper hit 
her/him?”  When you release it, the stopper will continue 
in the direction of the velocity it was moving.  (Be sure 
nothing is in that direction that might break.  The rubber 
stopper will be OK). 

 

     v 
                  v            ∆v 
        ∆s                         v 
   r         r   v 
 

The illustration on the right shows an object moving 
around a circle at constant speed, v, at two different 
points on the circle of radius r.  The vector diagram 
to the left shows the velocity vectors at the two 
different times.  Since these velocity vectors are 
always at right angles to the radius vectors, they 
sweep out the same angle and form an isosceles 
triangle similar to the isosceles triangle of the two 
radius vectors.  This means ∆s/r  =  ∆v/v.  From the 
definition of acceleration:  a = ∆v/∆t, and from the 
similar triangles, ∆v = v ∆s/r.  Replacing ∆v into the 
acceleration expression gives;  a =( v/r) (∆s/∆t) 
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Using a clear drinking cup hold a small ball in the upside down cup with your finger as shown on 
the left above.  Remove your finger and the ball falls.  Ask students:  “What must I do to keep 
the ball in the cup without holding it with my finger?”  When they suggest moving it downward, 
move it downward at constant velocity. (Again the ball falls out.)  Additional discussion should 
lead to the conclusion that it must be accelerated downward with the acceleration equal to, or 
greater than, the acceleration of gravity.  This discussion should help to avoid the often used 
fictitious: “centrifugal force.” 
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Newton’s law of universal gravitation and satellite orbits 
 
The radius of the orbits of earth satellites can be solved using Newton’s law of universal 
gravitation and the centripetal acceleration relationship. 
 
Force of gravity = GMm/r2. Centripetal force = mv2/r. Equating and solving for r: 
 

 

 

A nice demonstration device that can easily be constructed is 
shown on the left.  Some call it a “Greek waiters tray”.  Drill 
four holes in a thin piece of wood about 4 inches on a side.  
Attach four strings as shown and tie them in a single knot 
about a meter above.  When a clear cup of water is placed on 
the platform, it is possible to move the knot end of the 
platform in all sorts of different motions and the water will not 
spill out of the cup.  It is particularly spectacular to swing the 
cup and platform overhead and the water will not spill from 
the cup.  Before swinging make sure you have clear space 
overhead or the result will be catastrophic. 
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 r = GM/v2  Where  M is the mass of the earth in this case. 
 
Calculating the distance of a geo-synchronous satellite from the earth is a problem that should 
interest everyone in this age of extensive dependence upon these devices.  Express the velocity 
of the satellite in orbit in the above equation in terms of the circumference of the orbit and the 
period, T. required to circle the earth once:  v= 2πr/T.  Substituting this in the above equation 
will give the radius in terms of the period.  For a geo-synchronous orbit, set the period at one day 
in seconds.  Remember, this will be the radius of the orbit and not the distance from the surface 
of the earth. 
 
Energy in an inverse square law. (This discussion may be too mathematical for NPTW and 
requires knowledge of work and energy that will be discussed later in this paper.) 
 
A graphical fact about the function y = 1/x2 that can help compute the energy to launch a satellite 
into orbit is that the area under the graph of the function from some value to infinity equals the 
area under the rectangle from this value back to the coordinate axis. (Illustrated below.) 
Without calculus this graph fact can be memorized and will be useful in the following 
discussions.  In an APC class the same result can be obtained from integrating the function y=x-2 

from infinity to a specific x.  

             
 
 
 
 
 
 
 
       
 
 
 
When placing a satellite in orbit, the total energy required will be the energy required to lift it to 
the orbital distance from the earth, plus the kinetic energy required to get it moving fast enough 
to stay in orbit. 
 
 
 
 
 
 
 
 
 
 
 

 

 
  1/x2 
 

  
    

 
 
     1/R        1/R 
         0            R              x 
 
 

When you are plotting an inverse square function against 
its argument, the area under the graph from a specific 
value (R on the graph on the left) to infinity will always 
equal the area under the graph from this specific point (R), 
back to zero.  When computing the energy to carry a mass 
from some specific distance, R, to infinity, it will also equal 
the area of the rectangle from the point R back to the 
vertical axis.  Hence from GMm/r2 we can find the energy 
to lift a mass, m, from R to infinity and it will equal GMm/R 

 

GMm/r2 
 
 
GMm/RE

2 

 
GMm/RO

2 
      0                RE           Ro 

The graph on the right is the force of gravity 
plotted against the distance from the center of 
the earth.  The first rectangle of GMm/RE

2 by RE  
would be the energy required to carry the mass 
m to infinity from the surface of the earth.  The 
area of the rectangle GMm/RO

2 would be the 
energy required to carry the mass from the 
orbital distance to infinity.  The difference 
between these two areas is the work required 
to  
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lift the mass from the surface of the earth to its orbital distance, or its potential energy. 
Recognizing that the velocity of a satellite must be exactly the value in which the centripetal 
force on the satellite at a particular orbital radius equals the force of gravity, the kinetic energy of 
the satellite can be computed.  KE of orbit = ½ mv2.  From the centripetal acceleration 
expression, the force to hold the mass in orbit at radius RO  is GMm/RO2 = mv2/RO . Notice that if 
we multiply both sides of the equation by 1/2RO  we get ½ mv2 = ½ GMm/RO.   
 
Putting together the potential energy to lift the mass from the surface of the earth to orbital 
distance and the kinetic energy required to keep it in orbit we get: 
 
Total energy = PE + KE  = ( GMm/RE – GMm/RO)  +  1/2GMm/RO  =  GMm/RE -1/2GMm/RO 
 
Another interesting concept, escape velocity, which is the velocity required to supply sufficient 
kinetic energy to carry an object from the surface of the earth to infinity.  This can now be 
calculated by equating 1/2mv2 to GMm/RE.  (Note, this velocity would be the escape velocity 
from the earth, the satellite would still be trapped by the sun.) 
 
Momentum           
 
Impulse and momentum 
 
Linear momentum is one of physics’ major conserved quantities.  Unlike energy, it has only one 
form, mass times velocity.  That is, momentum  p = mv.  It is always conserved in all sorts of 
situations like collisions, rocket launches, jumping in the air, everything. 
 
A good way to introduce momentum conservation is by using two carts on a track with magnets 
repelling one another on one end and Velcro on the other end.  (Details below under collisions.) 
Use these carts to show elastic and inelastic collisions of the same and different mass carts.  
Repeatedly stress that in all situations, momentum is conserved. 
 
Next, run across the front of the room and quickly stop yourself against a wall.  Ask: “ Where 
did the momentum go?”  The subsequent discussion should lead to an understanding that the 
momentum was transferred from the earth to you as you accelerated positively and was 
transferred back to the earth as you accelerated negatively against the wall.  The huge mass of 
the earth moved at such a minutely small velocity that it was not noticed.  Now explain what 
would happen if you were on a skate board and accelerated in one direction.  Discuss what would 
happen to the skate board which is a small mass doing the same thing the earth did. 
 
Impulse is defined as unbalanced Force times the time it acts.  That is,  Impulse = F ∆t.  The 
impulse-momentum theorem states that impulse = change in momentum.  (Often this is cited as 
more like Newton actually stated his second law.) 
 
Graphs of force vs. time          
 
When we discus Newton’s second law, the forces are often held constant.  In impulse situations, 
particularly during collisions, the force of interaction does not remain constant.  A more general 
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definition of impulse is: the area under a force vs. time graph.  (In APC this is the same thing as:  
Impulse = ∫ F dt ) 
 Impulse  F∆t  = ∆(mv)  change in momentum 
 
 
 
Frequently it makes sense to plot force vs. time graphs to compute the area under the graph for 
impulse. 
 
 
 
 
 
 
 
 
 
Show your students that the basic units of impulse and momentum are the same.  For some 
reason, there is no single name for the units of impulse or momentum.  Impulse is Newton 
seconds and momentum is kilogram-meter per second.  Of course, these two different names are 
the same. 
 
Collisions            
 
The track and carts mentioned above are perfect for demonstrating elastic and inelastic collisions. 
 
 
( 
 
 
 
 
 
 
 
 
 
 
 
 
An intuitive discussion of how momentum is conserved can involve Newton’s 3rd law and the 
time the forces act on each of the two colliding objects.  Since the forces must be the same but in 
opposite directions and the times the forces act on each object must be the same, the loss of 
momentum by one (the negative impulse) must exactly equal the gain in momentum (the positive 
impulse) on the other. 
 

  

F 
   F 

On the right is an impulse 
graph for a simple 
constant force.  On the 
right is a more typical 
graph of impulse during a 
collision.  The area under 
the graph is impulse. 

Time Time 

 

The track and carts illustrated on the left are 
made from inexpensive materials and are 
distributed every other year at the NPTW. 
The carts are made from identical pieces of 
2X4 lumber, the track is from a 4 foot piece 
of 1 x 6 with V shaped grooves. lined with 
aluminum angle.  The wheels are from Pitsco 
and two large opposing magnets are 
inserted in one end of the cart with Velcro 
on the other end for inelastic collisions.  The 
entire apparatus costs less than $20.   
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Stress that in all sorts of collisions, momentum is always conserved.  Even when the cart slows 
down after the collision, the momentum is not lost but is transferred to the earth. 
 
 
 
 
 
Energy           
 
Work transfers energy, contrast this with  impulse transfers momentum 
 
Students may better understand the difference between force and work if they consider just 
pushing on a wall without its moving vs. pushing on a car by hand to get it started which moves 
faster and faster while moving it.  In which case do you get winded?  When the wall does not 
move, no work is done by the force.  After a long time pushing the wall you might get tired but 
not like when you push the car that starts moving.  When the car moves through a greater 
distance, you get winded because the energy in your body is being transferred to the kinetic 
energy of the car. 
 
Work involves force and distance.  Work transfers energy.  Impulse involves force and time.  
Impulse transfers momentum.  Also, work is a scaler and impulse is a vector. 
 
 
Definitions of work           
Definitions of work may differ depending upon the possible sophistication desired.  The 
following are all correct and are listed in the order of sophistication and possible application: 
 Work is force times distance. 
 Work is the component of the force in the direction of motion times displacement. 
 Work is the area under a force parallel vs. position graph.  

 For use in AP Physics C: Work =  t (The “dot” means the vector dot product) 

(If you earlier taught torque it might be well to point out that the units of work and torque are the 
same but they are different concepts.  Since with torque the force is always perpendicular to the 
moment arm (distance) and with work the force is always parallel to the distance. Even though 
the basic units are the same, a joule of work is not the same as a meter newton of torque.) 
 
 
 
 
 
 
 
 
 
In introductory physics classes, graphs of the component of the force parallel to the direction of 
motion vs. the distance through which the force acts can be very useful, particularly when 

  

Force 
parallel 
to distance 
moved 
  Distance moved 

Force 
during 
collision 
 
  Distance one object 
moves 

The graph on the left 
could represent an object 
moving across a friction 
surface at constant 
velocity.  On the right is 
the force between two 
objects during a collision. 
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discussing situations in which the force is not constant. Non-constant forces are almost always 
the case when energy is transferred during collisions. 
 
 
 
Potential energy and Kinetic energy 
 
When a force accelerates an object, it gives it kinetic energy.  When a force acts against a 
conservative force, it stores potential energy.  
 
 (Conservative forces, for example gravity or the force of a spring, can be understood as forces 
that “remember”.  That is, if the force passes through a point and later returns to the same point, 
the force will be the same.  Friction is not a conservative force since the work done is turned to 
heat and later returning to the same point will not experience the same force, often being in a 
different direction.) 
 
The expression for kinetic energy is so frequently used; it should be derived and memorized.   
Starting with the basic definition: Work = Fs.   If F is constant and freely accelerates an object 
starting from rest, v2 = 2as or s = v2/2a  (This comes from eliminating the t in the two simple 
kinematics expressions:  s = 1/2at2  and v = at) 
 
Replacing s in the work definition and recognizing that F = ma, will give: 
 Work = ma v2/2a = 1/2mv2 = Kinetic Energy 
 
When students know the expression for kinetic energy, they will often forget what it means.  
Consider the following question: 
 
A force of 30 newtons acts upward to lift 10 nt weight from rest vertically upward a height 2 
meters.  

1. Find the potential energy of the weight the instant after lifting it 2 meters. 
2. Find the kinetic energy of the weight the instant after lifting it 2 meters. 

 
It is surprising how often students will use  kinematics to find the velocity of the weight and the 
height it is lifted so they can plug into mgh and 1/2mv2 to find the answers. The work against a 
conservative force (potential energy) or 10nt x 2 m = 20 joule and the work of an unbalance 
force (kinetic energy) 20nt x 2m = 40 joule will give the immediate answers.  
 
Heat and Thermodynamics       
 
Heat vs. Temperature 
 
Heat and temperature are often confused.  Temperature has an elaborate operational definition 
but for our use it should be sufficient to state that Temperature is a measure of the average 
random kinetic energy per molecule in an object whereas Heat is a measure of the total random 
kinetic and potential energy of molecules in an object.  Actually, as it would be incorrect to 
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speak of the work in an object, it is also incorrect to speak of the heat in an object.  Heat and 
work relate to the transfer of energy rather than something that an object contains. 
 
Specific heat and Heat Capacity 
 
A simple relationship that is often discussed in Chemistry addresses the heat required to change 
the temperature of an object.  If the phase does not change, the amount of heat transferred to an 
object will equal a constant times the mass of the object times its temperature change. 
  ∆Q = cm∆T    
where ∆Q is the heat transferred, c is the specific heat, m the mass of the object and ∆T is the 
temperature change.  Specific heat, c is the heat required to raise a unit mass of a substance a unit 
degree and will make the units of the above equation work out. (For example, c can be measured 
in joules / kg ˚C.)  It probably should be mentioned that heat capacity is the total amount of heat 
required to change an object a unit temperature change and specific heat is the heat required to 
change a unit mass of an object a unit temperature change.  (Often in Chemistry the molar 
specific heat is used and has the obvious meaning of the heat required to raise a mole of a 
substance a degree temperature change.) 
 
Temperature remains constant during a phase change so the above relationship does not apply 
during phase changes.  Below is a graph for taking ice from -10˚ C to steam at 110˚C.  Students 
should be able to appreciate these familiar phase changes for water. 
 
 
 
 
 
 
 
 
 
In the graph above, a gram of ice at -10˚C is heated to 0˚C, melted to water requiring 80 calories, 
is then heated to 100˚C, and boiled to steam requiring 540 calories and finally heated a little 
more after boiling all to steam.  The specific heat of ice and steam are each about 0.5 
calories/gram˚C. The term “latent heat” is applied to the amount of heat required to cause a 
phase change.  The latent heat to change ice to water is 80cal/gram and the latent heat required to 
change water to steam is 540 cal/gram (both at atmospheric pressure.) 
 
Thermal expansion           
 
That objects expand when heated is well understood and discussing linear, area and volume 
expansion should be quite accessible to students.  Linear expansion can be expressed: 
  L’  =  L + ∆L   and  ∆L = aL∆T   
Where L’ is the new length after the temperature change ∆T,  L is the original length, and a is 
the coefficient of linear expansion, usually a very small number in units of per unit temperature 
change.  Area expansion can be expressed A’ = A + ∆A.  When area can be expressed as L2 , the 
expanded length expression can be squared and when the very small values of  a2  are ignored 

 

   Temp 
   C  100 
 
 
          0 
          -10    80      100                        540        Heat   
                 Temperature  difference calories 
 

The graph on the right 
is the temperature vs. 
heat change when one 
gram of water is 
heated from -10˚C to 
110 ˚C 
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the expression for area expansion becomes A’ = A + 2aA∆T  where the coefficient of area 
expansion ß = 2a.  This operation can be repeated for volume expansion with V’ = V + ∆V.  By 
cubing the length expression and dropping out the higher powers of  a.  The coefficient of 
volume expansion g  =3a.   The final expression for volume expression:  V’= V+3aV∆T 
 
Liquids behave in the same way as solids but gasses should be treated with the gas laws 
(discussed below) since pressure as well and temperature becomes much more important. 
 
The algebra suggested in the above discussion can be visually demonstrated as follows: 
 
 
 
 
 
 
 
 
 
 
 
Note in the above illustration that when the area expands by ∆L on a side, the area increases by  
2 ∆L L  and this is ∆A.  Hence A’ = A + ∆A  =  A + 2aL2∆T  =  A + 2aA∆T 
With the volume expansion, note that there are 3 expanded volumes each ∆L2L and it will follow 
using the same argument as with area  V’ = V + ∆V  will lead to V’ = V + 3aV∆T 
 
A wonderful question for students to ponder is:  What happens to a small hole in a large metal 
plate when it is heated in an oven?  Does the hole get larger or smaller?  Several ways of 
answering the problem are possible and even the famous ring and ball demonstration might help 
but something about the plate being large and the hole small presents conceptual problems.  One 
thing not to do is to go into a donut shop and ask them for an experimental answer.  Apparently, 
what they report for donut holes in the dough before and after cooking does not correspond to 
what should happen to a large metal plate with a small hole in it. (At least that’s what I’m told.) 
 
Work, heat and the Joule mechanical equivalent of heat experiment    
 
Historically the question of the relationship between mechanical work and heat had been debated 
for a long time before Joule did the definitive experiment.  The details can be found in almost 
any physics text but the basic idea is allowing falling weights to fall at constant velocity while 
attached through a string and pulley arrangement to a special paddle wheel inside of a water 
filled calorimeter.  A known amount of work can then be equated to a known amount of heat.  
The important result that should probably be learned is approximately:  
 

 4.185 joules = 1 calorie, or 4185 joules = 1 kilocalorie. 
Joule also did the experiment using resistors in water and supplying a known voltage and 
resulting current to determine the amount of “work” but at the time electrical measurements were 
not as reproduceable as mechanical measurements.   

 

     ∆L 
    L         ∆L          (∆L)2        Original V 
     L’           Original A 
     L’ = L + ∆L 
           L             L 
           L’ 
 
          L’ 
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An experiment that can be done using a light bulb in a Styrofoam cup can reproduce Joule’s 
electrical experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
 
(The Styrofoam cup is translucent and the light that the bulb is supposed to produce escapes.) 
 
The Laws of Thermodynamics         
With today’s very real concern about environmental problems, the laws of thermodynamics 
definitely should be discussed.  The first law of thermodynamics discusses how the internal 
energy of a system is changed by the amount of work and heat going in and out of the system.  
The law is easy to state mathematically but can seem different in different discussions if it is not 
clear whether a plus or minus sign is to be used when the work or heat is entering or leaving the 
system.  In this discussion we will use a + for heat or work going into the system and a – for heat 
or work leaving the system.  (Should you see a different statement in other texts, study carefully 
what the + or – means.) 
 First Law of Thermodynamics:  ∆U = ∆Q + ∆W   
 
Where ∆U is the change in internal energy of the system, ∆Q is the heat transferred into the 
system and ∆W is the work done on the system.  Naturally, all units of energy and work must be 
the same. 
 
The following is a very simple example of an application of the first law of thermodynamics in 
an idealized system that will be applied later to heat engines: 
 
 
   
 
 
 
 
 

 

The illustration on the left shows the basic apparatus.  A light 
bulb is inserted in a square of Styrofoam and attached to 
wire to an electrical plug.  A thermometer is also threaded 
through this square of Styrofoam near the bulb and the 
entire apparatus will be inserted into a Styrofoam cup filled 
with a measured mass of water.  After the bulb and 
thermometer are completely immersed, the plug is inserted 
into an outlet for a measured amount of time.  If the wattage 
of the bulb is known, the product of the wattage and time 
will give the Joules transferred to the water and the mass 
and temperature change of the water will give the calories.  
(The equipment for this experiment is given to NPTW 
participants every other year.)  This experiment always has 
about 10% error that can be easily explained! 

 

  ∆W 
 
 
         ∆h 
 
     ∆U 
 
        ∆Q 

The illustration on the left shows a cylinder with a volume of air 
trapped in it by a piston of mass, m, that confines the air and 
presses downward on the air.  Heat ∆Q is applied to the bottom of 
the cylinder causing the piston to rise up a distance ∆h.  As a result, 
the work done on the rising piston: ∆W = mg∆h.  Applying the first 
law of thermodynamics, the increase in internal energy of the 
system is:  ∆U = ∆Q - ∆W (since ∆W out) = ∆Q – mg∆h.  The 
increase in internal energy will probably occur by increasing the 
temperature (or kinetic energy of air molecules) confined by the 
piston.  Since the piston is allowed to rise freely, there will be no 
increase in pressure. 
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The second law of thermodynamics identifies the direction of natural heat flow: 
 
 Heat flows (naturally) from a high temperature source 
         to a low temperature source. 
 
There are many different ways of stating the second law of thermodynamics, often involving the 
concept of entropy.  The above statement probably will make more sense for a first-time 
presentation. The second law of thermodynamics is consistent with our relating heat to the 
random kinetic energy of molecules and could be used to clarify why we wear jackets on cold 
days.  Not to keep the cold from penetrating into us but to keep the internal energy (heat) of our 
bodies from escaping. 
 
The ideal gas laws           
 
These have often been previously introduced in Chemistry.  If they are new to your students, 
they deserve some attention. 
 
In the 17th and 18th centuries several scientists performed extensive investigations with gasses 
leading to what is now known as the ideal gas law.  Boyle’s law states that if temperature is held 
constant, the pressure times the volume of a confined gas will remain constant, or  PV = K.  
Charles’s law states that if pressure is held constant, the volume of a confined gas will be 
proportional to the absolute temperature, or V = k’T.  (Graphs of these two laws are shown on 
the next page.)           
 
The assorted gas laws can be combined to form the ideal gas law: 
 
 PV =nRT  where pressure and volume can be any units but temperature must be kelvin.  

n can be the number of molecules or the number of moles of the gas and R is selected to 
make the units work.  A popular value of R is 8.31 J mole-1 (˚K)-1 and is called the 
universal gas constant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Doing gas law experiments are not complicated but 
they do take some lab time and perhaps special lab 
equipment.  On the left is illustrated apparatus that can 
be purchased fairly inexpensively or even constructed.  
Large syringes of 100ml to 150ml can be purchased 
quite inexpensively and the structure shown is 
constructed to hold the syringe firmly with the board 
shown on top to hold weights or books.  The lower 
end of the syringe is sealed (a cutoff pencil erasure can 
act as a stopper) and the sealed enclosure below the 
piston can be compressed with weights and the inside 
volume measured.  A caliper will be required to 
measure the inside diameter of the syringe. 
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The Charles’s law graph can be extrapolated to determine absolute zero. Obviously, no real gas 
would be able to go all the way to absolute zero as might be suggested in the temperature vs. 
volume graph above.  However, many gasses at “normal” temperatures obey the ideal gas law 
very closely.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If a single board like the top 
board of the above structure 
is allowed to support the 
syringe, (shown on left) it can 
be lowered into several 
different large containers 
with different temperature 
water (ice, room. higher) to 
obtain constant pressure at 
different temperature for 
Charles’ Law. 

 

Above is illustrated the 
use of books to vary the 
pressure of the apparatus. 
 

  

On the left is the pressure vs. 
volume graph for Boyle’s law and 
on the right is the temperature vs. 
volume graph for Charles’ law.  The 
temperature vs. volume graph is a 
great way to extrapolate from 
“normal” temperatures to absolute 
zero. 

 

 
 
   P 
 
 
  V   
    T 

Since the ideal gas law, PV = nRT involves three 
variables, a graph of all three variables would involve 
three dimensions or a surface.  The illustration on the 
left shows all three variables of pressure, volume and 
temperature on a single surface.  It is possible to view 
the two-dimensional graphs by looking along the 
appropriate axis and through the appropriate face.  
For example, Boyle’s law is seen by looking across the 
PV face in the direction of the T axis. 
 

  T 

V 

P 

V 
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Pressure vs. Volume graphs and heat engines 
 
Pressure vs. Volume graphs are very helpful when learning about the thermodynamics of basic 
heat engines.  The application of thermodynamics to automobile engines, heat pumps, 
refrigerators and many other devices that must be considered in light of their environmental 
consequences are both relevant and interesting to students.  
 
In the following discussions we will initially confine the discussions of heat engines to a simple 
cylinder and piston in which heat enters and pushes up the piston as discussed above in the Laws 
of Thermodynamics on page 19. 
 
From the definition of pressure:  P = Force/Area = F/A  and since the cross-sectional area A of 
the cylinder is constant, we can say the volume swept out by the moving piston is ∆V = ∆h A.  
This means that pressure times volume change or  P∆V = (F/A)X(∆h A)  or P∆V = F∆h  But, this 
is the work done in moving the piston up a distance ∆h.  This can be generalized into an 
important result: 
 
The work done in any action on a confined volume of gas is the area under a 
pressure vs. volume graph. 
 
Since we learned from the Joule mechanical equivalent of heat experiment that work and heat are 
equivalent (of course for calculations, the units must be the same) we can discuss the heat and 
work that goes in and out of a gas changing volume with a piston above it by drawing a pressure 
vs. volume graph or a PV graph. 
 
The first heat engine was not invented by James Watt but he was the first to appreciate that all 
heat engines must rely on heat being transferred from a high temperature source to a low 
temperature source (2nd Law of Thermodynamics) and that the work extracted from this heat 
transfer would be the difference between the heat in from the high temperature source, minus the 
heat transferred to the low temperature source. (1st Law of Thermodynamics).  Watt’s innovation 
was to separate the high temperature source from the low temperature source.         
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 High temperature 
 
 Heat in 
 
   Work out 
 
 
 
 Heat out 
 Low temperature 
 

 High temperature 
 
        Heat out 
 
       Work in 
 
 
 
        Heat in 
     Low temperature 

Typical schematic diagrams of heat 
engines (shown on the left) and heat 
pumps or refrigerators (shown on the 
right.)  The 1st Law of thermodynamics 
describes the heat and work in and out 
of the system and the 2nd Law 
describes the direction of heat flow.  If 
the refrigerator seems to violate the 
2nd Law, remember that the work in 
also requires some sort of engine that 
will involve more, high to low heat 
transfer than the reverse by the 
refrigerator. 
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The circles in the diagrams above represent the systems using heat to produce work (heat engine) 
or using work to reverse the direction of heat flow (heat pump or refrigerator).  More detailed PV 
diagrams can help to understand what is happening in actual systems. (A discussion of the 
typical internal combustion engine used in cars will be discussed on the next page.) 
 
To begin a brief discussion of how modern heat engines work, we will first consider a piston that 
can move up and down in a closed cylinder: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
To get an idea on how the above discussion applies to a real engine we will now discuss  
the essentials of a 4-stroke internal combustion engine that is commonly used in most cars and 
small trucks.  Many excellent vides of this type of engine can be found on the web.  Consider: 
 A great discussion of a single cylinder 4 stroke engine: 
 http://www.youtube.com/watch?v=Pug73uIG6Zo 
 
 Another discussion of the typical 4-cylinder engine used in many small cars.  This 
 discussion devotes the first part of the video to an animation of how the engine is 
 assembled that would help students to come to understand all the parts of the engine.  The 
 final part of the video shows all 4 cylinders in operation: 
 http://www.youtube.com/watch?v=BXQ27pU37E 
If this does not work, simply type “4 stroke engine” into your browser and many will appear. 
 

 

            A            V2 
 V1           ∆h 

The illustration on the right represents a simplified piston 
engine that is closed on the top.  The crossectional area of 
the cylinder is A, and the piston moves up a distance ∆h.  The 
initial volume above the piston is V1 and the final volume is 
V2 making ∆V= V2 – V1.  A pressure volume graph will 
represent the amount of work done to compress the gas 
above the piston.  (We will ignore the weight of the piston, 
friction, etc.) In a subsequent discussion we will revise this 
very simple engine to show what goes on in real engines. 
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The pressure-volume graph on the left represents the work 
done to compress the gas in the piston above.  The path 
from 1 to 2 represents the compression from V1 to V2 and 
the area under this curved line down to the volume axis 
would represent the work done to accomplish this 
compression.  At point 2, if something were done to rapidly 
heat the gas above the piston, the pressure would rise to 
point 3 on the graph.  Now if the piston moves downward 
to point 4 on the graph, more work would come out from 
the engine than was done to compress the gas.  If at point 
4 something was done to cool the gas to its original 
temperature, the cycle could begin again. 
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In the illustrations below, the intake valve is on the left and the exhaust valve is on the right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two-stroke engine used in small engines on garden tools and go-carts, the piston acts to open 
and close the intake and exhaust ports.  An excellent video can be found at: 
http://www.youtube.com/watch?v=Z6YC3154so4 
 
 
The concept of the Carnot engine and engine efficiency may be too advanced for introductory 
High School Physics but excellent discussions can be found in any University Physics Text or by 
seeking “Carnot Engine” on the web.  Two brief points will be made here: 
 1.  Engine efficiency increases if the difference in temperature between the high and low 
 temperature source increases. 
 2.  The more nearly an engine is “reversible” the higher will be its efficiency. 
 
When considering the use of energy to heat homes, it might be useful to consider the total 
amount of energy used with a typical furnace compared with a heat pump.  A furnace begins 
with a high temperature flame that must be cooled before entering the house.  A heat pump does 
a much smaller amount of work on nearly the same temperature air and brings it to the 
temperature of the house.  The discussion of the refrigerator below helps explain this. 

 

      Intake  Compression  Ignition        Power    Exhaust 

           a   b         c        d     e 

 

Pressure          d 
 
         Heat in 
        c 
 
        e 
           Heat out 
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   Volume 

 Steps illustrated on the PV graph on the left: 
a –b   Intake stroke.  Fuel air mixture is drawn into cylinder. 
          Intake valve open and exhaust valve closed. 
b—c  Compression stroke.  Fuel air mixture is compressed. 
c—d  Ignition.  At the top of the compression stroke, the 
         piston hardly moves as the fuel air mixture is ignited. 
d—e  Power stroke.  At the increased pressure and 
         temperature, the piston moves down and does work. 
e—a  Exhaust stroke.  The piston moves up with the exhaust 
valve open and intake valve closed.  Heat leaves system to 
low temperature source. 
In steps b, c and d both valves are closed. 
 
 
 



 25 

 
 
Reversibility and refrigerators (also air conditioners and heat pumps). 
A discussion of how a refrigerator or heat pump works would be appropriate for a High School 
class.  Its basic operation is important to understand when considering problems related to 
energy conservation and global warming.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The refrigerator transfers heat from a low temperature source to a high temperature source in 
seeming violation of the 2nd Law of Thermodynamics.  But the work required to run the 
compressor comes from some sort of engine that requires more heat transfer from a high 
temperature source to a low temperature source, the overall effect is no violation. All 
refrigerators and heat pumps use a working fluid that changes from a liquid to a gas at near room 
temperature.  The evaporation of the liquid at the liquid to gas “throttling” valve results in a large 
temperature drop during the phase change. 
Reversibility and engine efficiency 
A perfect heat engine would convert all the heat coming into it into useful work.  This is 
impossible!  In the early stages of heat engine development, the question was: “What engine will 
convert the greatest amount of heat to work?”  In 1824 Sadi Carnot published a paper describing 
the maximum efficiency heat engine operating between two given temperatures.  Details of the 
argument are involved but the key idea is that no engine can be more efficient than a reversible 
engine.  A simple argument should help to understand why this is true: 
 
 
 
 
 
 
 
 

 

Basic refrigerator   Liquid to gas valve 
 
Inside                Outside 
refrigerator             
refrigerator 
cold              warm 
gas                liquid 
containing              containing 
pipes                pipes  
           Compressor 
Valve closes on compression  Valve opens on compression 
 

In the basic refrigerator diagram on the 
right the fluid in the coils moves 
counterclockwise.  The compressor 
converts the gas moving in from the left 
to a liquid on the right.  This liquid is 
warmer than room temperature and 
radiates heat out into the room.  At the 
top, the liquid to gas valve allows the 
liquid to evaporate, cooling it to a much 
lower temperature inside the 
refrigerator 

 

     Refrigerator           Super engine 
    High temperature source 
 
 
 
 
 
 
 
    Low temperature source 

The illustration on the right shows a reversible engine used as a 
refrigerator being driven by a hypothetical super engine that is more 
efficient than the reversible engine.  Since the super engine is more 
efficient than the reversible engine, the difference between the heat 
out of the high temperature source transferred to the low 
temperature source must be less than the equal amount of work 
required to drive the refrigerator.  This means that more heat will be 
transferred to the high temperature source than to the low 
temperature source! This violates the 2nd law of thermodynamics.  
Therefore, the super engine is impossible. 


